Purchase Solution

Solutions to the Helmholtz Equation

Not what you're looking for?

Ask Custom Question

Please help with the following problem. Provide step by step calculations for each problem.

Consider the Helmholtz partial differential equation:
u subscript (xx) + u subscript (yy) +(k^2)(u) =0
Where u(x,y) is a function of two variables, and k is a positive constant.

a) By putting u(x,y)=f(x)g(y), derive ordinary differential equations for f and g.

b) Suppose the boundary conditions are that u(x,y) vanishes on the lines x=0 ,x=3, y=0, and y=2. Derive the corresponding boundary conditions for f and g.

c) Given k^2, show that only certain values of the separation constant lead to non-trivial solutions for both f and g.

d) Find the non-trivial solutions of the differential equations for u(x,y) for the given boundary conditions.

e) For k^2 =2(pi)^2, obtain the general form of the solution u(x,y) of the partial differential equation compatible with the boundary conditions.

Purchase this Solution

Solution Summary

We solve various cases of the Helmholtz equation by separating variables and performing Fourier expansions where necessary.

Purchase this Solution


Free BrainMass Quizzes
Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Probability Quiz

Some questions on probability

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.