Explore BrainMass

Explore BrainMass

    3, 5, and 7 are the only Prime Triplets

    Not what you're looking for? Search our solutions OR ask your own Custom question.

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    A classic unsolved problem in number theory asks if there are infinitely many pairs of `twin primes', pairs of primes separated by 2, such as 3 and 5, 11 and 13, or 71 and 73. Prove that the only prime triple (i.e. three primes, each 2 from the next) is 3, 5, 7.

    © BrainMass Inc. brainmass.com March 5, 2021, 12:37 am ad1c9bdddf

    Solution Preview

    To prove that 3 5 and 11 are the only Triplets.

    Given: Many twin primes exist.

    Any positive integer can be expressed in the following form

    3n, 3n+1, 3n+2

    Conside 3n:

    Let 3n be the first prime P

    Let 3n+2 be the second prime p+2 (twin prime of p)

    let 3n+4 be the third prime p+4 (prime triple of p, p+2 and p+4)

    for n =1, 3n, 3n+2, 3n+4 would give you ...

    Solution Summary

    This solution evaluates all the prime numbers and prove that every third number (odd number) is not a prime except 7. In that process prove that Prime twins exist.