# Work Done by Radial Vector Field Along a Curve

Not what you're looking for?

If C is the curve given by r(t) = (1 + 3 sin t) i + (1 + 5 sin^2 t) j + (1 + 5 sin^3 t) k, 0 ≤ t ≤ π/2 and F is the radial vector field F(x, y, z) = xi + yj + zk, compute the work done by F on a particle moving along C.

##### Purchase this Solution

##### Solution Summary

This solution helps compute work done.

##### Solution Preview

Please see the attached PDF document for the full solution to the ...

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.