Purchase Solution

Integrals : Riemann Sum with Diagrams

Not what you're looking for?

Ask Custom Question

This question has me going around in circles. I can't make the Sigma symbol on the computer, so I used the word "Sigma" instead. For (c), n is above the Sigma symbol and i=1 is below it.

(a)Find an approximation to the integral as 0 goes to 4 of (x^2-3x)dx using a Riemann sum with right endpoints and n=8.
(b)Draw a diagram to illustrate the approximation in part (a).
(c)Use this equation (the integral as a goes to b of f(x)dx=the limit as n goes to infinity of Sigma f(xi) delta x) to evaulate the integral as 0 goes to 4 of ((x^2)-3x)dx.
(d)Interpret the integral in part (c) as a difference of areas and illustrate it.

Purchase this Solution

Solution Summary

Riemann sums are explained. The solution is detailed and well presented. The response received a rating of "5" from the student who originally posted the question.

Solution Preview

Ok First draw this function from x = 0 to x = 4 I get f(x) values 0,-2,-2,0, and 4.

now divide the x axis into 8 equal sections for 0 to 4 The area of interest is between. The x axis and the curve. The area under the x axis is a negative area and the area above the x- axis ...

Purchase this Solution

Free BrainMass Quizzes
Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.