Purchase Solution

Integral Domains and Fields : Embedding Theorem

Not what you're looking for?

Ask Custom Question

Note: C is set containment

If R is an integral domain, show that the field of quotients Q in the Embedding Theorem is the smallest field containing R in the following sense:

If R C F, where F is a field, show that F has a sub-field K such that R C K and K is isomorphic to Q.

Purchase this Solution

Solution Summary

A proof involving fields is offered in the solution.

Solution Preview

R is an integral domain, it means R is a commutative ring with the multiplicative unit e. Suppose R C F, where F is a field. Now we construct a map f: Q->F. For any element x=a/b in Q, ...

Purchase this Solution

Free BrainMass Quizzes
Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Probability Quiz

Some questions on probability

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.