Purchase Solution

Complex integrals

Not what you're looking for?

Ask Custom Question

(1) let f:C----R be an analytic function such that f(1)=1. Find the value of f(3)

(2) Evaluate the integral over & of dz/ z^2 -1 where & is the circle |z-i|=2

(3)Evaluate the integral over & of (z-1/z) dz where & is the line path from 1 to i

(4) Evaluate the integral between 2pi and 0 of
e^-i@ . e ^e^i@ d@
where @=theta

(5) Show that the integral over |z|=2 of ( z/z-1)^n = 2pi ni

Purchase this Solution

Solution Summary

This shows how to evaluate given complex integrals.

Solution Preview

(1)
f = u + i v is analytic if and only if it satisfies the Cauchy-Riemann equations,
du/dx = dv/dy
dv/dx = -du/dy
where z = x + i y and d is a partial derivative.
since in the case specified f is real valued, v=0 and hence, by the first C-R equation, du/dx=0. So f(3)=u(3)=u(1)=f(1)=1.
(2)
We use the theorem of residues:
For integrating a function counter-clockwise over a closed contour,
int(dz f(z)) = 2 Pi i Sum(a(c))
where the sum is over the singular points, c, within the contour, and the residue, ...

Purchase this Solution


Free BrainMass Quizzes
Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.