# Wronskian of Functions

Not what you're looking for? Search our solutions OR ask your own Custom question.

Wronskian of Functions

Differential Equation

Wronskian of Functions

Define the Wronskian of functions. Show that the Wronskian of the functions x^a, x^b, x^c (x > 0) is equal to (a - b)(b - c)(c - a)x^(a+b+c-3). Are these functions linearly independent?

Â© BrainMass Inc. brainmass.com December 24, 2021, 4:52 pm ad1c9bdddfhttps://brainmass.com/math/graphs-and-functions/wronskian-prove-whether-functions-linearly-independent-12157

#### Solution Summary

This solution is comprised of a detailed explanation of the Wronskian of functions with example. It contains step-by-step explanation that the Wronskian of the functions x^a, x^b, x^c (x > 0) is equal to (a - b)(b - c)(c - a)x^(a+b+c-3). Solution contains detailed step-by-step explanation.

$2.49