Purchase Solution

# Wronskian of Functions

Not what you're looking for?

Wronskian of Functions

Differential Equation
Wronskian of Functions

Define the Wronskian of functions. Show that the Wronskian of the functions x^a, x^b, x^c (x > 0) is equal to (a - b)(b - c)(c - a)x^(a+b+c-3). Are these functions linearly independent?

##### Solution Summary

This solution is comprised of a detailed explanation of the Wronskian of functions with example. It contains step-by-step explanation that the Wronskian of the functions x^a, x^b, x^c (x > 0) is equal to (a - b)(b - c)(c - a)x^(a+b+c-3). Solution contains detailed step-by-step explanation.

Solution provided by:
###### Education
• BSc, Manipur University
• MSc, Kanpur University
###### Recent Feedback
• "Thanks this really helped."
• "Sorry for the delay, I was unable to be online during the holiday. The post is very helpful."
• "Very nice thank you"
• "Thank you a million!!! Would happen to understand any of the other tensor problems i have posted???"
• "You are awesome. Thank you"

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Probability Quiz

Some questions on probability