Purchase Solution

# Lipschitz functions

Not what you're looking for?

A function f:A->R is called Lipschitz if there exists a bound M>0 such that Absolute value of f(x)-f(y)/x-y <=M for all x, y belong to A. Geometrically speaking a function f is Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.

a- Show that if f:A->R is Lipschitz then it is uniformly continuous on A.

b- Is the converse statement true? Are all uniformly continuous functions necessarily Lipschitz?

##### Solution Summary

This is a proof regarding uniformly continuous and Lipschitz functions.

##### Solution Preview

a. Proof:
f: A->R is Lipschitz, then there exists M>0, such that for any x,y in A, we have |f(x)-f(y)|<=M|x-y|. Now for any e>0, we can find ...

##### Free BrainMass Quizzes

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts