Lipschitz functions
Not what you're looking for?
A function f:A->R is called Lipschitz if there exists a bound M>0 such that Absolute value of f(x)-f(y)/x-y <=M for all x, y belong to A. Geometrically speaking a function f is Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.
a- Show that if f:A->R is Lipschitz then it is uniformly continuous on A.
b- Is the converse statement true? Are all uniformly continuous functions necessarily Lipschitz?
Purchase this Solution
Solution Summary
This is a proof regarding uniformly continuous and Lipschitz functions.
Solution Preview
a. Proof:
f: A->R is Lipschitz, then there exists M>0, such that for any x,y in A, we have |f(x)-f(y)|<=M|x-y|. Now for any e>0, we can find ...
Purchase this Solution
Free BrainMass Quizzes
Solving quadratic inequalities
This quiz test you on how well you are familiar with solving quadratic inequalities.
Graphs and Functions
This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.
Exponential Expressions
In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.
Multiplying Complex Numbers
This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.
Geometry - Real Life Application Problems
Understanding of how geometry applies to in real-world contexts