Graphs : Connectedness, Vertices and Edges
Not what you're looking for?
11. Let G be a graph with n>= 2 vertices.
a) Prove that if G has at least (n-1) + 1 edges the G is connected.
( 2 )
b) Show that the result in (a) is best possible; that is, for each n>= 2, prove there is a graph with (n- 1)
( 2 )
edges that is not connected.
Purchase this Solution
Solution Summary
Connectedness, Vertices and Edges are investigated. The solution is detiled and well presented.
Solution Preview
Please see the attached file.
(a) Prove by contradiction:
We know the number of edges in a complete graph with n nodes is (because in a complete graph, every node is connected to other n-1 nodes, therefore the degree of every node is (n-1), and the total degree of ...
Purchase this Solution
Free BrainMass Quizzes
Exponential Expressions
In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.
Multiplying Complex Numbers
This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.
Solving quadratic inequalities
This quiz test you on how well you are familiar with solving quadratic inequalities.
Graphs and Functions
This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.
Know Your Linear Equations
Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.