Explore BrainMass

Explore BrainMass

    Fixed Point Iterations

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    1. The equation x - 3 ln x = 2 has exactly two solutions A and B, with 0 < A < B.
    (You do not have to show this.)

    (a) Show that A is in [0.5,0.7], and B is in [8.3,8.5].

    (b) Consider the following fixed-point iteration for finding a solution of the given
    equation: xn+1 = e(1/3(Xn-2)):
    Show that if X0 = B+ E, where E is a positive real number, then X1 > X0.
    Deduce that this Fixed point iteration does not converge to ¯Before all X0 > B.
    (Hint: You may need to use the facts that B is a solution of x-3 ln x = 2,
    and that B> 3.)

    (c) Consider the following fixed point iteration for finding a solution of the given
    Xn+1 = 2 + 3 ln Xn:
    (i) Show that this fixed point iteration converges to B for all X0 is in [6.5,9.5].
    (ii) Starting with X0 = 8.4, use this fixed point iteration to find B correct to
    four significant figures.

    © BrainMass Inc. brainmass.com October 9, 2019, 7:11 pm ad1c9bdddf

    Solution Preview

    (a) Let f(x) = x - 3lnx - 2, then the zeros of f(x) are the solutions of the
    equation x - 3lnx = 2. We have
    f(0.5)=0.5794>0, f(0.7)=-0.2300<0, f(8.3)=-0.0488<0, f(8.5)=0.0798>0
    By the mean value theorem, f has a zero between 0.5 and 0.7 and another zero
    between 8.3 and 8.5. Since 0<A<B, then A is in [0.5,0.7], B is in [8.3,8.5]
    (b) The iteration is X(n+1)=exp((1/3)(X(n)-2))
    Let g(x)=exp((1/3)(x-2))-x, then g'(x)=(1/3)exp((1/3)(x-2))-1
    When x>=8.3, ...

    Solution Summary

    Fixed Point Iterations are investigated. The response received a rating of "5/5" from the student who originally posted the question.