Explore BrainMass

Explore BrainMass

    Fourier matrix

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    The row and column indices in the nxn Fourier matrix A run from 0 to n-1, and the i,j entry is E^ij, where E^ij = e^(2*PI*i/n). This matrix solves the following interpolation problem: Given complex numbers b_0, ... b_(n-1), find a complex polynomial f(t) = c_0 + c_1 + ... + c_(n-1) t^(n-1) such that f(E^v) = b_v.

    (i) Explain how the matrix solves the problem.
    (ii) Prove that A is symmetric and normal, and compute A^2.
    (iii) Determine the eigenvalues of A.

    Please refer to the attachment for question with proper symbol notations.

    © BrainMass Inc. brainmass.com June 4, 2020, 12:50 am ad1c9bdddf
    https://brainmass.com/math/fourier-analysis/determine-eigenvalues-fourier-matrix-363518

    Attachments

    Solution Summary

    Fourier matrix is contemplated in this solution.

    $2.19

    ADVERTISEMENT