Explore BrainMass

Explore BrainMass

    Finite-Element Method Description

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    Please see the attached files for full problem description.

    Using Finite-Element Methods, assuming that stiffness of each element is equal to f.

    © BrainMass Inc. brainmass.com February 24, 2021, 2:25 pm ad1c9bdddf
    https://brainmass.com/math/finite-element-method/finite-element-method-description-20166

    Attachments

    Solution Preview

    Please see attached file.

    I have discretized and labelled the nodes and elements as follows.

    For element 1, theta = 90 degrees + tan^-1(2/3) = 123.69 degrees

    F1 0.307684 -0.46154 -0.30768 0.461535 u1
    F2 = f * -0.46154 0.692316 0.461535 -0.692316 u2
    F3 -0.30768 0.461535 0.307684 -0.461535 u3
    F4 0.461535 -0.69232 -0.46154 0.692316 u4

    For element 2, theta = tan^-1(1/3.5) = 15.95 degrees

    F3 0.926888 0.26032 -0.92689 -0.26032 u3
    F4 = f * 0.26032 0.073112 -0.26032 -0.073112 u4
    F5 -0.92689 -0.26032 0.926888 0.26032 u5
    F6 -0.26032 -0.07311 0.26032 0.073112 u6

    For element 3, theta = tan^-1(4/1.5) = 69.44 degrees
    F1 0.123333 0.329748 -0.12333 -0.329748 u1
    F2 = f * 0.329748 0.881627 -0.32975 -0.881627 u2
    F5 -0.12333 -0.32975 0.123333 0.329748 u5
    F6 -0.32975 -0.88163 0.329748 0.881627 u6

    For element 4, theta = 360 - ...

    Solution Summary

    The finite-element method descriptions are given.

    $2.19

    ADVERTISEMENT