Chinese Remainder Theorem and Proofs
Not what you're looking for?
The Chinese Remainder Theorem (CRT) applies when the moduli ni in the system of equations x≡ a1 (mod n1) ... x≡ ar (mod nr) are pairwise relatively prime. When they are not, solutions x may or may not exist. However, the related homogeneous system (2'), in which all ai=0, always has a solution, namely the trivial solution x = 0. The next question addresses these more general problems.
Prove that the solutions of the homogeneous version of the system of equations above (where ai= 0), are precisely the integer multiples of N= least common multiple (n1,..., nr).
Note: Compare this with the uniqueness statement in the CRT.
Purchase this Solution
Solution Summary
A proof involving the Chinese Remainder Theorem is provided. The solution is detailed and well explained.
Purchase this Solution
Free BrainMass Quizzes
Know Your Linear Equations
Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.
Exponential Expressions
In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.
Solving quadratic inequalities
This quiz test you on how well you are familiar with solving quadratic inequalities.
Graphs and Functions
This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.
Geometry - Real Life Application Problems
Understanding of how geometry applies to in real-world contexts