Purchase Solution

# Cauchy-Riemann Equations : First-Order Partial Derivatives

Not what you're looking for?

Please see the attached file for full problem description.

3. Use Cauchy-Riemann equations and the given theorem to show that the function
_
f (z) = e^z

is not analytic anywhere.

Theorem: Suppose that
f (z) = u (x, y) + i v (x, y)
and that f'(z) exists at a point z0 = x0 + i y0. Then the first-order partial derivatives of u and v must exist at (x0, y0), and they must satisfy the Cauchy-Riemann equations

ux = vy, uy = - vx

there. Also, f &#900;(z0) can be written

f &#900;(z0) = ux + i vx,

where these partial derivatives are to be evaluated at (x0, y0).

##### Solution Summary

Cauchy-Riemann Equations and First-Order Partial Derivatives are investigated. The solution is detailed and well presented.

##### Solution Preview

Please see the attached file for the complete solution.
Thanks for using BrainMass.

3. Use Cauchy-Riemann equations and the given theorem to show that the function

f (z) = e z

is not ...

Solution provided by:
###### Education
• BSc , Wuhan Univ. China
• MA, Shandong Univ.
###### Recent Feedback
• "Your solution, looks excellent. I recognize things from previous chapters. I have seen the standard deviation formula you used to get 5.154. I do understand the Central Limit Theorem needs the sample size (n) to be greater than 30, we have 100. I do understand the sample mean(s) of the population will follow a normal distribution, and that CLT states the sample mean of population is the population (mean), we have 143.74. But when and WHY do we use the standard deviation formula where you got 5.154. WHEN & Why use standard deviation of the sample mean. I don't understand, why don't we simply use the "100" I understand that standard deviation is the square root of variance. I do understand that the variance is the square of the differences of each sample data value minus the mean. But somehow, why not use 100, why use standard deviation of sample mean? Please help explain."
• "excellent work"
• "Thank you so much for all of your help!!! I will be posting another assignment. Please let me know (once posted), if the credits I'm offering is enough or you ! Thanks again!"
• "Thank you"
• "Thank you very much for your valuable time and assistance!"

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts