Purchase Solution

Fundamental Theorem of Calculus and Uniform Convergence

Not what you're looking for?

Ask Custom Question

Suppose f is Reimann integrable on [a,b] and let F(x)= ∫_a^x▒f(t)dt for all x ∈[a,b]. Prove that F is continuous on [a,b] (hint: f must be bounded)
Let F(x) = {█(x^2 sin⁡(1/x) if 0<|x|≤1,@0 if x=0)┤ and let f(x) = F'(x)
Prove that F'(x) exists for all x ∈[-1,1]
Find f(x) for all x ∈[-1,1], and prove that f is reimann integrable on [-1, 1]
Find ∫_(-1)^1▒f(x)dx

Let f_n(x) = 1/n sin(n^2 x)
Prove f_n converges uniformly on R to a differentiable function, yet 〖f'〗_n(0) diverges.

Let f_n (x)= 〖sin〗^n (x) for all x ∈[0,π]. Prove that 〖f'〗_n is not uniformly convergent on [0,π]. (hint: suppose false and deduce a contradiction)

Note: theorem included below to be used as an aid with the hint in #4

Suppose f_n is defined on a finite interval I and 〖f'〗_n is continuous on I. Suppose 〖f'〗_n converges uniformly on I. Suppose moreover that there exists at least one point a ∈ I such that f_n (a) is a convergent sequence of real numbers. Then there exists a differentiable function f such that f_n→f uniformly on I, and f'(x) ≡ lim┬(n→∞)⁡〖〖f^'〗_n (x)〗 on I

Purchase this Solution

Solution Summary

The fundamental theorem of calculus is applied.

Solution Preview

Suppose f is Reimann integrable on [a,b] and let F(x)= ∫_a^x▒f(t)dt for all x ∈[a,b]. Prove that F is continuous on [a,b] (hint: f must be bounded)
Consider F(x+h)= ∫_a^(x+h)▒f(t)dt= ∫_a^x▒f(t)dt+ ∫_x^(x+h)▒f(t)dt=F(x)+∫_x^(x+h)▒f(t)dt
Given that f is Reimann Integrable in [a, b] and hence is bounded on [a, b].
So, there exists some real number M such that for all x in [a, b] so in [x, x+h] for any h such that the second interval lies totally inside the first interval.
Taking the limit as ,
We have ...

Purchase this Solution


Free BrainMass Quizzes
Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Probability Quiz

Some questions on probability

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.