# Solving Inequality and Finding Zeros of Polynomials

1. Solve the inequality algebraically

5x-3≥-2x2

The solution set is ____(interval notation)

2. Solve the following inequality

60x-64<60/x

3. List the potential rational zeros of the polynomial function. Do not attempt to find zeros.

F(x)=11x^4-7x^3+x^2-x+1

4. Solve the equation in the real number system.

X^4-3x^3+12x^2-48x-64=0

5. Use the remainder theorem to find the remainder when f(x) is divided by x+3. Then use the factor theorem to determine whether x+3 is a factor of f(x).

F(x)=3x^6-27x^4+x^2-7

Remainder is______

https://brainmass.com/math/basic-algebra/solving-inequality-finding-zeros-polynomials-544485

#### Solution Summary

The solution gives detailed steps on solving the given inequalities and finding the zeros of given polynomials. Also, a step of factoring the polynomial is shown and explained if some factors are given.

$2.19