Roots and polynomials
Not what you're looking for?
If z is an n-th term of 1, show taht 1+z+z^2+z^3+....+z^n-1=0.
Solve the equation with n=5 and hence factorize 1+z+z^2+z^3+z^4 into linear factors with complex coefficient and then into quadratic factors with real coefficients.
Purchase this Solution
Solution Preview
Proof: Since z is an n-th root of 1, z!=1 (!= means not equal to), we have 1-z^n=0. Note 1-z^n=(1-z)(1+z+z^2+...+z^(n-1)) and 1-z!=1, thus we have 1+z+z^2+...+z^(n-1)=0.
<br>Now suppose n=5. we want to factorize 1+z+z^2+z^3+z^4.
<br>(1)quadratic factors with real coefficients
<br> ...
Purchase this Solution
Free BrainMass Quizzes
Solving quadratic inequalities
This quiz test you on how well you are familiar with solving quadratic inequalities.
Geometry - Real Life Application Problems
Understanding of how geometry applies to in real-world contexts
Probability Quiz
Some questions on probability
Exponential Expressions
In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.
Multiplying Complex Numbers
This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.