# Polynomial division

PART ONE:

solve:

(32x^6 - 24x^2 y^9 + 4x^2 y) / (4x^2 y)

A) 8x^4 y^3 - 6y^8 + 1

B) 8x^3 y^4 - 6y^8 + 1

C) 8x^3 y^2 - 6xy^7 + 1

D) 8x^4 y^3 - 6xy^8 + 1

PART TWO:

solve:

(15m^3 + 26m^2 - 11m - 6) / (5m-3)

A) 3m^2 + 26/5 times m - 5 and 1/5

B) 3m^2 + 2m- 2

C) 3m^2 + 7m - 2

D) 3m^2 + 26m / 5m-3

Â© BrainMass Inc. brainmass.com February 24, 2021, 2:12 pm ad1c9bdddfhttps://brainmass.com/math/basic-algebra/polynomial-division-performed-7338

#### Solution Preview

PART ONE

(32x^6 - 24x^2 y^9 + 4x^2 y) / (4x^2 y)

Divide each term in the numerator by the denominator

(A+B+C)/D = A/D + B/D + C/D

= (32x^6/4x^2 y) - (24x^2 y^9/4x^2 y) + (4x^2 y/4x^2 y)

Since x^m / x^n = x^(m-n)

= 8x^4(y^-1) ...

#### Solution Summary

This shows how to perform polynomial division.

$2.19