Purchase Solution

# Fibonacci numbers: F 2n+1 - Fn Fn+2 = (-1) n

Not what you're looking for?

Application of Mathematical Induction

Application of Mathematical Induction

Fibonacci Numbers :- The Fibonacci numbers are numbers that has the following properties.

If Fn represents the nth Fibonacci number,

F1 = 1, F2 =1, F3 =2, F4=3, F5 = 5 etc.

We can find the Fibonacci numbers which are&#8805; 3 by using the relation

Fn= Fn-1 + Fn-2 for n &#8805; 3

Application of mathematical Induction

Prove that
F 2n+1 - Fn Fn+2 = (-1) n

##### Solution Summary

This solution is comprised of a detailed explanation of the application of Mathematical Induction. It contains step-by-step explanation for solving the equation of the Fibonacci numbers: F 2n+1 - Fn Fn+2 = (-1) n

##### Solution Preview

Application of Mathematical Induction

Application of Mathematical Induction

Mathematical Induction :- If a statement is true in the first case and if it is true for all ...

Solution provided by:
###### Education
• BSc, Manipur University
• MSc, Kanpur University
###### Recent Feedback
• "Thanks this really helped."
• "Sorry for the delay, I was unable to be online during the holiday. The post is very helpful."
• "Very nice thank you"
• "Thank you a million!!! Would happen to understand any of the other tensor problems i have posted???"
• "You are awesome. Thank you"

##### Free BrainMass Quizzes

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Probability Quiz

Some questions on probability