Purchase Solution

# Differentiation : Find Local Extrema of a Function on an Interval

Not what you're looking for?

Locate the absolute extrema of the function on the closed interval. f(x) = -x^2 + 3x [0,3] [Answer is minimum at (0,0) and (3,0) and max at (3/2), 9/4)

Locate the absolute extrema of the function on the closed interval. g(t) = t^2/t^+ 3 [-1,1] Answer Min (0,0) Max (-1, 1/4) (1, 1/4)

Locate the absolute extrema of the function on the closed interval. y = e^x sin x [0,pi] Answer: Min: (0,0) (pi,0) Max (3pi/4, square root of 2/2(e^3pi/4)

##### Solution Summary

Local extrema are found. The solution is detailed and well presented. The response received a rating of "5/5" from the student who originally posted the question.

##### Solution Preview

Please see the attached file for the complete solution.
Thanks for using BrainMass.

Differentiation
________________________________________
I am really having trouble following this, so please put as much explanation in for each step as you can.

Locate the absolute extrema of the function on the closed interval. f(x) = -x^2 + 3x [0,3] [Answer is minimum at (0,0) amd (3,0) ...

Solution provided by:
###### Education
• BSc , Wuhan Univ. China
• MA, Shandong Univ.
###### Recent Feedback
• "Your solution, looks excellent. I recognize things from previous chapters. I have seen the standard deviation formula you used to get 5.154. I do understand the Central Limit Theorem needs the sample size (n) to be greater than 30, we have 100. I do understand the sample mean(s) of the population will follow a normal distribution, and that CLT states the sample mean of population is the population (mean), we have 143.74. But when and WHY do we use the standard deviation formula where you got 5.154. WHEN & Why use standard deviation of the sample mean. I don't understand, why don't we simply use the "100" I understand that standard deviation is the square root of variance. I do understand that the variance is the square of the differences of each sample data value minus the mean. But somehow, why not use 100, why use standard deviation of sample mean? Please help explain."
• "excellent work"
• "Thank you so much for all of your help!!! I will be posting another assignment. Please let me know (once posted), if the credits I'm offering is enough or you ! Thanks again!"
• "Thank you"
• "Thank you very much for your valuable time and assistance!"

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts