Purchase Solution

Congruence modulo 43 (alternatively, equivalence modulo 43)

Not what you're looking for?

Ask Custom Question

Let S = Z_43 (where the underscore, "_", indicates that what follows it, in this case 43, is a subscript). Let Q be a subset of S that contains ten non-zero numbers (i.e., that Q contains ten non-zero elements of S). Prove that Q contains four distinct numbers "a," "b," "c," "d" such that ab = cd in Z_43.

Purchase this Solution

Solution Summary

A detailed, step-by-step proof (of the statement that Q contains four distinct numbers "a," "b," "c," "d" such that ab = cd in Z_43) is provided.

Solution Preview

The steps in the proof:

1. Let S = Z_43. We could express S as any set of 43 consecutive integers. For the sake of definiteness (and without loss of generality), we can assume that S = {0, 1, 2, 3, ..., 42}.

2. For every integer "z," there is a unique pair (i, j) of integers such that z = 43*i + j and 0 <= j <= 42 (where "<=" denotes "less than or equal to"), hence "j" is an element of Z_43. This is often expressed by stating that "z is congruent to j (modulo 43)" or by stating that "z is equivalent to j (modulo 43)." Using the terminology given in the statement of this problem, it is expressed by stating that "z = j in Z_43."

To see this, consider division of "z" by 43, and let "i" and "j" denote the quotient and the remainder in the division (we can choose "i" and "j" so that 0 <= j <= 42):

(z/43) = i + (j/43) = [(43*i) + j]/43

Multiplying both sides by 43, we obtain

z = 43*i + j

3. Let Q be a subset of Z_43 that contains 10 non-zero numbers. Since the elements of Q are integers, the product "ab" of any two elements "a," "b" of Q is an integer, hence the product "ab" ...

Solution provided by:
  • AB, Hood College
  • PhD, The Catholic University of America
  • PhD, The University of Maryland at College Park
Recent Feedback
  • "Thanks for your assistance. "
  • "Thank you. I understand now."
  • "Super - Thank You"
  • "Very clear. I appreciate your help. Thank you."
  • "Great. thank you so much!"
Purchase this Solution

Free BrainMass Quizzes
Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.