Purchase Solution

Poles and Stability

Not what you're looking for?

Ask Custom Question

The steady-state solution of stable systems is due to simple pole in the j-Omega axis of the s-plane coming from the input. Suppose the transfer function of the system is

H(s) = Y(s)/X(s) = 1 / [(s+1)^2 + 4]

(a) Find the poles and zeros of H(s) and plot them in the s-plane. Find then the corresponding impulse response h(t). Determine if the impulse response of this system is absolutely integrable so that the system is BIBO stable.

(b) Let the input x(t) = u(t). Find y(t) and from it determine the steady-state solution.

(c) Let the input x(t) = tu(t). Find y(t) and from it determine the steady-state response. What is the difference between this case and the previous one?

(d) To explain the behavior in the case above consider the following: Is the input x(t) = tu(t) bounded? That is, is there some finite value M such that |x(t)| < M for all times? So what would you expect the output to be knowing that the system is stable?

Attachments
Purchase this Solution

Solution Summary

This posting contains the solution to the given problems.

Purchase this Solution


Free BrainMass Quizzes
Architectural History

This quiz is intended to test the basics of History of Architecture- foundation for all architectural courses.