# Density and Distribution Functions : Cauchy Density Function and Joint Distribution

Not what you're looking for?

4.17. X has the U(?pi/2, pi/2) distribution, and Y = tan(X). Show that V has density l/(pi(1 + y2)) for ?oo <y <oo . (This is the Cauchy density function.) What can be said about the mean and variance of Y? How could you simulate values from this distribution, given a supply of U(O, 1) values?

4.21. Let X and Y have joint density 2 exp(?x ? y) over 0 < x <y < oo. Find their marginal densities; the density of X, given Y = 4; and the density of Y, given X = 4. Show that X and Y are not independent.

Find the joint density of U = X + Y and V = X/Y. Are U and V independent?

##### Purchase this Solution

##### Solution Summary

The Cauchy Density Function and Joint Distributions are investigated. The solution is detailed and well presented. The response received a rating of "5" from the student who originally posted the question.

##### Solution Preview

Please see the attached file for the complete solution.

Thanks for using BrainMass.

Solution to 4.17.

In order to find the density function of Y, we need to find its distribution function first. Since X follows uniformly over , we know that its density function is as follows.

Now , so

So, the density function of Y is given by

Note:

Then by definition of mean, we can compute the mean of Y as follows.

This is an improper ...

###### Education

- BSc , Wuhan Univ. China
- MA, Shandong Univ.

###### Recent Feedback

- "Your solution, looks excellent. I recognize things from previous chapters. I have seen the standard deviation formula you used to get 5.154. I do understand the Central Limit Theorem needs the sample size (n) to be greater than 30, we have 100. I do understand the sample mean(s) of the population will follow a normal distribution, and that CLT states the sample mean of population is the population (mean), we have 143.74. But when and WHY do we use the standard deviation formula where you got 5.154. WHEN & Why use standard deviation of the sample mean. I don't understand, why don't we simply use the "100" I understand that standard deviation is the square root of variance. I do understand that the variance is the square of the differences of each sample data value minus the mean. But somehow, why not use 100, why use standard deviation of sample mean? Please help explain."
- "excellent work"
- "Thank you so much for all of your help!!! I will be posting another assignment. Please let me know (once posted), if the credits I'm offering is enough or you ! Thanks again!"
- "Thank you"
- "Thank you very much for your valuable time and assistance!"

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Terms and Definitions for Statistics

This quiz covers basic terms and definitions of statistics.

##### Measures of Central Tendency

This quiz evaluates the students understanding of the measures of central tendency seen in statistics. This quiz is specifically designed to incorporate the measures of central tendency as they relate to psychological research.

##### Know Your Statistical Concepts

Each question is a choice-summary multiple choice question that presents you with a statistical concept and then 4 numbered statements. You must decide which (if any) of the numbered statements is/are true as they relate to the statistical concept.

##### Measures of Central Tendency

Tests knowledge of the three main measures of central tendency, including some simple calculation questions.