Purchase Solution

Product Mean

Not what you're looking for?

I received three data sets (the data here are fictional to preserve confidentiality, but the point is the same): In 1998, a group of companies sold 1,000 units of Product A, 500 of B, 200 of C etc, for a total of 2000 units sold for ALL 8 of a set of 8 products. In 1999, the numbers were 900 for A, 400 for B, 300 for C etc, for a total of 1800 units for all 8 of these products.

Also, in 1999, a sample of 300 employees from the different companies were asked about if they had sold each product and how much they had sold. For Product A, 80% said they had sold at least one unit, and among those 240 employees, the mean # of units sold was 20. For B, 90% said they had sold at least one unit and the mean # sold among those 270 employees was 10. For C, 100% had sold a mean of 5, etc., for a total of 100 (mean) for all 8 products.

I do not know how many employees answered the original questions in 1998 and 1999. I do not have the specific data for each employee, only what I have provided above. So basically, this is what I have:

1998 1999 1999 (means for those who sold) sample of 300
Product A 1000 900 20 - 80%
Product B 500 400 10 - 90%
Product C 200 300 5 - 100%
'
'
Total = 2000 1800 100

The main question is whether the sample of 300 employees in 1999 is an unbiased representation of the larger population, as depicted in 1998 and 1999. I was thinking of the best way to analyze these data. The first thing that came to mind was Spearman's Rho. I was also wondering whether I should treat each number (e.g., 1000, 500, 200 etc. in 1998) as a PERCENTAGE of the TOTAL number for that year [2,000] so I would get, e.g., 50%, 25%, 10% etc. and then compare the percentages for each year to see if the patterns were the same. But if I do that, do I use Chi-Square/Goodness of Fit? The problem is that it's not as if each employee could choose only one product. Plus, I am looking at rates sold, not simply if employees said "yes I sold one." Thus, I don't think the Chi-Square is appropriate (but I could be wrong).

It really is a simple question but I want to make sure I do the right test, based on the limited data I have. I put 1 credit as what I was willing to pay, which I think is fair considering that it should take only a minute to determine the best approach.

Solution Summary

I received three data sets (the data here are fictional to preserve confidentiality, but the point is the same): In 1998, a group of companies sold 1,000 units of Product A, 500 of B, 200 of C etc, for a total of 2000 units sold for ALL 8 of a set of 8 products. In 1999, the numbers were 900 for A, 400 for B, 300 for C etc, for a total of 1800 units for all 8 of these products.

Also, in 1999, a sample of 300 employees from the different companies were asked about if they had sold each product and how much they had sold. For Product A, 80% said they had sold at least one unit, and among those 240 employees, the mean # of units sold was 20. For B, 90% said they had sold at least one unit and the mean # sold among those 270 employees was 10. For C, 100% had sold a mean of 5, etc., for a total of 100 (mean) for all 8 products.

I do not know how many employees answered the original questions in 1998 and 1999. I do not have the specific data for each employee, only what I have provided above. So basically, this is what I have:

1998 1999 1999 (means for those who sold) sample of 300
Product A 1000 900 20 - 80%
Product B 500 400 10 - 90%
Product C 200 300 5 - 100%
'
'
Total = 2000 1800 100

The main question is whether the sample of 300 employees in 1999 is an unbiased representation of the larger population, as depicted in 1998 and 1999. I was thinking of the best way to analyze these data. The first thing that came to mind was Spearman's Rho. I was also wondering whether I should treat each number (e.g., 1000, 500, 200 etc. in 1998) as a PERCENTAGE of the TOTAL number for that year [2,000] so I would get, e.g., 50%, 25%, 10% etc. and then compare the percentages for each year to see if the patterns were the same. But if I do that, do I use Chi-Square/Goodness of Fit? The problem is that it's not as if each employee could choose only one product. Plus, I am looking at rates sold, not simply if employees said "yes I sold one." Thus, I don't think the Chi-Square is appropriate (but I could be wrong).

It really is a simple question but I want to make sure I do the right test, based on the limited data I have. I put 1 credit as what I was willing to pay, which I think is fair considering that it should take only a minute to determine the best approach.

Solution Preview

Hello,

I would perform a t-test for Each Product. Take the mean of Product A in 1998 (1000), subtract the Mean of A in 1999 (900), and divide by ...

Measures of Central Tendency

This quiz evaluates the students understanding of the measures of central tendency seen in statistics. This quiz is specifically designed to incorporate the measures of central tendency as they relate to psychological research.

Measures of Central Tendency

Tests knowledge of the three main measures of central tendency, including some simple calculation questions.

Terms and Definitions for Statistics

This quiz covers basic terms and definitions of statistics.