Conditional Probability Formula and Contingency Tables

In a large accounting firm, the proportion of accountants with MBA degrees and at least 5 years of professional experience is 0.75 times the proportion of accountants with no MBA degree and less than 5 years of professional experience. Furthermore, 35% of the accountants in this firm have MBA degrees, and 45% have less than 5 years of professional experience.
(a) What is the probability of a randomly selected accountant to have at least 5 years of professional experience?
(b) What proportion of accountants with MBA degrees have at least 5 years of professional experience?
(c) What is the probability of a randomly selected accountant to have at least 5 years of professional experience and no MBA degree?
(d) If one of the firm's accountants is selected at random, what is the probability that this accountant has an MBA degree or at least 5 years of professional experience but not both?

Solution Preview

We are given P(MBA)=0.35, so P(no MBA)=1-0.35=0.65.

P(less than 5 years | MBA)=0.45 , so P(at least 5 years | ...

Solution Summary

The solution gives detailed steps on calculating the conditional probability under different conditions using contingency tables.

See attached template.
Using the Cereal worksheet (which we used in the Week 2 Lab for Linear Regression Analysis), the Calorie variable was recoded into "high calorie" and "low calorie" categories. We used 120 calories per serving as the break point (greater than or equal to 120 is "high calorie").
A contingency table wa

Please assist to state the basic rules of probabilityand apply these rules to events of interest.
Also assist with the set up a contingency table for categorical variables and solve for the probability of simple, joint andconditional events.
Identify and explain the different uses of the basic graph types.
See the

Objective: Calculate binomial and Poisson probabilities.
1) Chapter 5: Problem 5.5 (binomial)
Solve the following problems by using the binomial formula.
a. If n = 4 and p = .10 , find P(x = 3) .
b. If n = 7 and p = .80 , find P(x = 4) .
c. If n = 10 and p = .60 , find P(x ≥ 7) .
d. If n = 12 and p = .45

Each year, ratings are compiled concerning the performance of new cars during the first 90 days of use. Suppose that the cars have been categorized according to whether the car needs warranty-related repair (yes or no) and the country in which the company manufacturing the car is based (United States or not United States). Based

2. For the following table, what is the value of :
a) P(A1)
b) P(B1│A2)
c) P(B2 and A3). Compute this as P(B2)*P(A3│ B2) . In what row and column will you find this answer? Rows are B1 & B2: columns are A1, A2 & A3.
Second Event
First Event
A1 A2 A3 Total
B1 2 1 3 6
B2 1 2 1 4

Use the following contingency table:
Event A Event B
Event C 9 6
Event D 4 21
Event E 7 3
Determine the following probabilities:
a) P (A and C)
b) P (A and D)
c) P B and E)
d) P (A and B)

See attached file for format andformulas.
Q4: 4 (+) Given the following contingency table:
B B'
A 10 30
A' 25 35
Find the following:
a) A | B
b) A' | B'
c) A | B'
Q4: 5 The manager of a large computer network has developed the following proba

I have been struggling with theses two following problems:
illustration: age a(0.00%) b(0.01-0.9%) c(>_0.10%)
d 0-19 142 7 6 155
e 20-39 47 8 41 96
f 40-59 29 8 77

X~N(500,400) Determine the following
Random Variable X
a) P( X <= 515 )
b) P( X <= 515 | X > 450 ) (note: "|" implies given)
c) P( 20 < X^(1/2) <= 25 ) ( i.e. 20 < "square root of X" < 25 )
please clearly state each step for each part. The attached file states the problem again.