Explore BrainMass

Continuity correction

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

Suppose a fair coin is tossed n times. The probability of obtaining head and tail are the same because this is a fair coin. The proportion of heads is defined as the number of heads appeared divided by n. We can model this probability distribution by binominal distribution.

For large n, the binominal distribution can be replaced by the normal distribution with μ=np and δ=√np(1-p)
Suppose we would like to obtain the proportion of heads between 0.45 and 0.55 for a fair coin tossed n times. That means we are trying to find: P(0.45n≤x≤0.55n)

a. are the conditions satisfied for replacing binominal probability distribution by normal distribution if n=100?
b. Find the numerical value of P(0.45n≤x≤0.55n) for n=100 by normal distribution if conditions in (a) have been satisfied.
c. Find the general formula of cumulative distribution function φ in standard normal distribution as a function of n.
d. Show that when n increases, the continuity correction becomes less and less important
e. Verify the claim in (d) by using n=100, 250, 500, 750 and 1000

© BrainMass Inc. brainmass.com October 25, 2018, 1:55 am ad1c9bdddf

Solution Summary

The solution deals with the continuity correction of binomial distribution to Normal distribution.

See Also This Related BrainMass Solution

approximation to find binominal with a correction for continuity

Suppose that 13% of the population of the U.S. is left-handed. If a random sample of 180 people from the U.S. is chosen, approximate the probability that fewer than 26 are left-handed. Use the normal approximation to the binomial with a correction for continuity.

Round your answer to at least three decimal places. Do not round any intermediate steps.

View Full Posting Details