Purchase Solution

Problem in Quantum Mechanics Involving a Nanowire

Not what you're looking for?

Ask Custom Question

Given a Nanowire with cross sectional dimensions of 10 nm x 10 nm, what momentum would an
electron in the ground state need in order to possess the same energy as a stationary electron
(zero momentum) in the n=1,2 state?

Note that, when it says n=1,2 it means nx=1 and ny=2... In reality its not that restrictive, but it was pointed out to me that the wording was confusing. I am not looking for two solutions, one for n=1 and one for n=2. This is a problem dealing with a mixed system where two dimensions are governed by quantum mechanics and the third by classical.

I need the step-by-step solution please.

Purchase this Solution

Solution Summary

We solve for the momentum of an electron in a nanowire of given dimensions in the 1,1 mode which has the same energy as a stationary electron in the 1,2 mode.

Solution Preview

To solve this problem, we need to solve the time-independent Schrodinger equation for an electron in a nanowire. This equation says

(1) H psi(x, y, z) = -hbar^2/2m laplacian(psi(x,y,z)) + V(x,y,z) psi(x,y,z) = E psi(x,y,z),

where m is the mass of the electron, H = -hbar^2/2m laplacian + V is the Hamiltonian of the electron, V(x,y,z) = 0 is its potential (which is zero in this case because the electron is free inside the nanowire), psi(x,y,z) is its wavefunction, and E is its energy. We solve (1) by separation of variables. We let

psi(x,y,z) = X(x) Y(z) Z(z)

where the z-axis points along the direction of the nanowire and the x and y axes point along the sides of the square cross section, with x = y = 0 at one of the corners. ...

Purchase this Solution


Free BrainMass Quizzes
Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

Basic Physics

This quiz will test your knowledge about basic Physics.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

The Moon

Test your knowledge of moon phases and movement.