Purchase Solution

# Particle in a box and the Harmonic Oscillator

Not what you're looking for?

Consider the particle of mass subject to a one-dimensional potential of the following form:

V(x) = 1/2 kx^2 for x>0
V(x) = + infinity for x < 0

This is a combination of the particle in a box and the harmonic oscillator that might be a better model for real diatomic than the standard harmonic oscillator. On the right side of x = 0, the Hamiltonian is exactly the same as a harmonic oscillator Hamiltonian. The hard wall at x = 0, however, introduces a boundary condition. Use what you have learned about both the ordinary harmonic oscillator and particle in a box boundary conditions to answer the following questions.
a) what does this boundary condition require the wave function to do at x = 0?
b)
c)
d)
e)

##### Solution Summary

I have provided solution to this problem without the use of tedious mathematical formula. Solution is very well presented with explanations.

##### Solution Preview

Following is the text part of the solution. Please see the attached file for complete solution. Equations, diagrams, graphs and special characters will not appear correctly here. Thank you for using Brainmass.
===============================================================================

a. Boundary condition is that at x = 0, Wave function &#968;(x) = &#968;(0) = ...

##### Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

##### Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.

##### Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

##### Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

##### The Moon

Test your knowledge of moon phases and movement.