The gravitational force on a body located a distance R from the center of a uniform spherical mass is due solely to the mass lying at distance r<R or r=R, measured from the center of the sphere. This mass exerts a force as if it were a point mass at the origin.
Use the above result to show that if you drill a hole through the earth and then fall in, you will execute simple harmonicmotion about the earth's center. Find the time it takes you to return to your point of departure and show that this is the time needed for a satellite to circle the earth in low orbit with r approximately equaling R(earth). In deriving this result, you need to treat the earth as a uniformly dense sphere, and you must neglect all friction and any effects due to the earth's rotation.

Solution Preview

First we have to find the formula for the force due to gravity on a mass m at distance r from the center of the Earth of mass M and radius R. Since the Earth is a spherical body the gravitational field that it produces will have spherical symmetry and we can always consider it to be coming from a point source at ...

Solution Summary

The solution is comprised of an explanation for the simple harmonic motion of the center of the earth. Time to return to point of departure and time needed for a satellite to circle the earth is also considered in the solution.

... questions related to wave mechanics, fluid dynamics, simple harmonic motion, gravitational filed ... orbit, about two Earth radii from the center of Earth. ...

... Hence the particle will execute simple harmonic motion about the center of the earth with an amplitude equal to the radius of earth R and the equivalent force ...

... of earth = - GMm/r where r is measured from the center of earth... attached to a spring (spring constant = 40N/m) moves in Simple Harmonic Motion (SHM) with ...

... 1.An object undergoing simple harmonic motion takes 0.35 s to travel from one point of ... (c) Calculate the amplitude of the motion. ... a) toward the center of Earth...

... There is another simple way to understand a harmonic oscillation. ... point at which the perpendicular meets the Y axis be Q. Let us consider the motion of the ...

... d. Earth sweeps a larger area per time because it ... machine needle moves up and down in simple harmonic motion with an ... high above the table is the center of mass ...

... a magnet placed directly under the center point would ... can not be calculated by the equations of simple harmonic motion. ... A simple pendulum consists of a heavy ...

... This inversion of harmonic analysis used to be performed by the ... that not all waves obey the simple relationship for ... surf breaking on a beach!) The motion of an ...