Purchase Solution

Derivation of S = -k sum over r of P_r log(P_r)

Not what you're looking for?

Ask Custom Question

See attached file.

Attachments
Purchase this Solution

Solution Summary

The formula S = -k sum over r of P_r log(P_r) is derived from first principles. We also derive the expressions for the internal energy, entropy, and Helmholtz free energy in terms of the partition function. Finally we solve the problem about the Einstein model of a crystal.

Solution Preview

In my opinion this problem is a bit too straightforward as all you have to do is use the formula for P_r:

P_r = exp(-E_r)/Z

and do some simple manipulations with that.

So, I'm going to make it more difficult. We will derive the formula for the entropy, but without assuming the general formula for the entropy:

S = - k Sum over r of P_r Log(P_r)

We will also derive the validity of the above expression in the case of the canonical ensemble. The expression for the internal energy (equation (2) below) is derived in the Appendix. The harmonic oscillator problem follows after the Appendix.

It is fairly straightforward to express the pressure and internal energy of a system in terms of the partition function:

P = 1/beta d Log(Z)/dV (1)

E = -d Log(Z)/dbeta (2)

I'll give the proof below in the Appendix. Let's first see how we can derive an expression for the entropy using (1) an (2).
For a general differentiable function of two variables f(x,y) we have:

df = df/dx dx + df/dy dy

Where df/dx is the partial derivative of f w.r.t. x at constant y and df/dy is the partial derivative of f w.r.t. y at constant x.

So, if we take the function f to be Log(Z) and the variables x and y to be the volume V and temperature parameter beta, we can write:

d Log(Z) = d Log(Z)/dV dV + dLog(Z)/dbeta dbeta

Using (1) and (2) we can express the partial derivatives of Log(Z) in terms of the pressure and internal energy. We then get:

d Log(Z) = beta P dV - E dbeta (3)

We can rewrite the term E d beta using:

d[E beta] = E dbeta + beta dE ---------->

E dbeta = d[E beta] - beta dE

Inserting this in (3) gives:

d Log(Z) = beta P dV - d[E beta] + beta dE ------->

d[Log(Z) + E beta] = beta P dV + beta dE ------>

dE = 1/beta d[Log(Z) + E beta] - P dV -----> ...

Purchase this Solution


Free BrainMass Quizzes
Basic Physics

This quiz will test your knowledge about basic Physics.

The Moon

Test your knowledge of moon phases and movement.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.

Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.