Purchase Solution

Voltage Due to Charge Configuration

Not what you're looking for?

Ask Custom Question

See the attached file.
Let a uniform surface charge density of 5 nc/m2 be present at the z=0 plane, a uniform line charge density of 8 nc/m, be located at x=0, z=4 and a point charge of 2 μC be present at P(2,0,0). If V=0 at M(0,0,5), find V at N(1,2,3).
It seems to me that I need to find the electric field intensity for each of the charge configurations (the surface charge, the line charge, and the point charge), add the components (changing between coordinate systems where necessary), and then compute the integral. However, I do not understand how to find expressions for the electric field intensity or how to adjust the calculations if the zero reference potential is not at infinity.

In summary, please explain:
1. How to derive the electric field intensity for each of the charge configurations (with particular emphasis on line charges that are not parallel to the z-axis)
2. What difference it makes that the zero reference is not an infinity
3. How to obtain the final answer (please show vector operations in detail as that is often where I get lost)
This problem has stumped me for a week now. Many thanks for your help.

Attachments
Purchase this Solution

Solution Summary

This post provides a solution for electric field intensities for charge configurations (surface charge, line charge, and point charge).

Solution Preview

See attached file for solution.

Let a uniform surface charge density of 5 nc/m2 be present at the plane, a uniform line charge density of 8 nc/m, be located at , and a point charge of 2 μC be present at P(2,0,0). If at M(0,0,5), find V at N(1,2,3).
(answer is 1.98 kV)
It seems to me that I need to find the electric field intensity for each of the charge configurations (the surface charge, the line charge, and the point ...

Purchase this Solution


Free BrainMass Quizzes
Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

Basic Physics

This quiz will test your knowledge about basic Physics.

The Moon

Test your knowledge of moon phases and movement.