Explore BrainMass

Explore BrainMass

    Charge density induced on the surface of grounded plane

    Not what you're looking for? Search our solutions OR ask your own Custom question.

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    Consider a point charge +q at a distance d above an infinite grounded conducting plane.

    (a) Determine the charge density induced on the surface, then integrate to find the total surface charge.

    (b) Find the force that the point charge exerts on the conductor by considering the force on the induced surface charge density.

    Compare with the result of a force calculation on the image charge.

    © BrainMass Inc. brainmass.com March 4, 2021, 6:52 pm ad1c9bdddf


    Solution Preview

    I'll assume that you are familiar with the method of images. You can find the electric field for this problem by pretending that the conducting plate isn't there but instead a charge of -q at the position of the ''mirror image'' of the charge, i.e. at distance d on the other side of the plate.

    The sum of the electric fields of the charge and the mirror charge only has a component perpendicular to the plate. This means that the correct boundary condition is satisfied for the problem in which you have the conducting plate.

    Now you need to find the induced charge density on the conducting plate. Using Gauss' theorem, taking the closed surface to be a ''pillbox'' with a surface inside the conductor (where the electrical field is zero) and a surface just outside the conductor you find:

    E = sigma/epsilon_0 (1)

    Here E is ...

    Solution Summary

    The charge density induced on the surface is integrated to find the total surface charge is determined. The results of a force calculations on the image charge is compared.