Purchase Solution

Parallel Plate Capacitor with a Spherical Boss

Not what you're looking for?

Ask Custom Question

See the attached file.

A large parallel plate capacitor is made up of two plane conducting sheets with seperation D, oneo f which has a small hemispherical boss of radius a on its inner surface (D >> a). The conductor with the boss is kept at zero potential, and the other conductor is at a potential such that far from the boss the electric field between the plates is Eo.
(a) Calculate the surface-charge densities at an arbitrary point on the plane and on the boss, and sketch their behavior as a function of distance (or angle).
(b) Show that the total charge on the boss has the magnitude 3*pi*e0*E0*a^2.
(c) If, instead of the other conducting sheet at a different potential, a point charge q is placed directly above the hemispherical boss at a distance d from its center, show that the charge induced on the boss is:
q' = -q[1 - (d^2-a^2)/(d*sqrt*d^2+a^2)].

Purchase this Solution

Solution Summary

The solution shows in detail how to find the charge density on a spherical boss inside a parallel plate capacitor, and how to use the method of images to find the charge density when one plate is removed.

Purchase this Solution


Free BrainMass Quizzes
Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

Basic Physics

This quiz will test your knowledge about basic Physics.

Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.

Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.