# Solutions for algebra problems

1.

Add.

(-9 + 3n6 + 3n5) + (2n6 + 5n5 + 6)

A) 5n6 + 8n5 - 3

B) 10n11

C) 5 + 8n6 - 3n5

D) -7n6 + 8n5 + 9

2.

Subtract.

(8n7 + 2n6 + 17) - (5n6 + 5n7 + 15)

A) 3n7 - 3n6 + 32

B) 3n7 + 7n6 + 32

C) 2n13

D) 3n7 - 3n6 + 2

3.

Multiply.

4(5x)

A) 20

B) 20x

C) 9x

D) 9

4.

Multiply.

-8x2(-10x4 + 9x3)

A) 8x2

B) 8x6 + 8x5

C) 80x6 - 72x5

D) 80x6 + 9x3

5.

Factor.

y2 - 64

A) (y + 64)(y - 64)

B) (y + 8)(y - 8)

C) (y2 + 8)(y2 - 8)

D) (y - 8)(y - 8)

8.

Solve and check the linear equation.

0.40x - 0.20(50 + x) = -0.04(50)

A) {50}

B) {30}

C) {40}

D) {20}

9.

Solve the equation by factoring.

x2 = x + 6

A) {-2, -3}

B) {1, 6}

C) {-2, 3}

D) {2, 3}

12.

Determine whether the equation defines y as a function of x.

x + y = 9

A) y is a function of x

B) y is not a function of x

13.

Evaluate the function at the given value of the independent variable and simplify.

f(x) = x2 - 1; f(x - 2)

A) x2 + 4

B) x2 - 4x + 3

C) x2 - 3

D) x2 - 4x + 4

14.

Find the slope of the line that goes through the given points.

(-1, 4), (5, 4)

A)

B) 0

C) 2

D) Undefined

15.

Find the slope of the line that goes through the given points.

(-3, -7), (9, -7)

A) 0

B) 1

C) -4

D) 4

16.

Determine whether the given quadratic function has a minimum value or maximum value. Then find the coordinates of the minimum or maximum point.

f(x) = -x2 - 2x - 6

A) minimum;

B) minimum;

C) maximum;

D) maximum;

17.

Find the degree of the polynomial function.

g(x) = -7x3 + 9

A) 0

B) -7

C) 3

D) 4

18.

Find the zeros of the polynomial function.

f(x) = x3 + x2 - 42x

A) x = - 7, x = 6

B) x = 0, x = 5, x = 6

C) x = 5, x = 6

D) x = 0, x = - 7, x = 6

19.

Find the zeros of the polynomial function.

f(x) = x3 + 4x2 - 9x - 36

A) x = -3, x = 3

B) x = 4, x = -3, x = 3

C) x = -4, x = 9

D) x = -4, x = -3, x = 3

21.

Simplify.

log6

A) -2

B) 2

C) -6

D) 6

22.

Simplify.

log2 25

A) 10

B) 32

C) 5

D) 2

23.

Simplify.

9log9(7)

A) 1

B) 97

C) 7

D) 9

25.

Write in logarithmic form.

43 = 64

A) 4 = log 3 64

B) 64 = log 4 3

C) 3 = log 64 4

D) 3 = log 4 64

#### Solution Summary

The solution provides detailed explanation for many algebra problems.