Linear Algebra : Vectors - Inner Products
Not what you're looking for?
Given a vector w, the inner product of R^n is defined by:
<x,y>=Summation from i=1 to n (xi,yi,wi)
[a] Using this equation with weight vector w=(1/4,1/2,1/4)^t to define an inner product for R^3 and let x=(1,1,1)^T and y=(-5,1,3)^T
Show that x and y are orthogonal with respect to this inner product. Compute the values of ||x|| and ||y|| with respect to this inner product.
[b]In C[0,1], with inner product defined above, consider the vectors 1 and x. Find the angle theta between 1 and x. Determine the vector projection p of 1 onto x and verify that 1-p is orthogonal to p.
Thank you.
Purchase this Solution
Solution Summary
Inner products are calculated and vector relations proven.
The solution is detailed and well presented.
Purchase this Solution
Free BrainMass Quizzes
Solving quadratic inequalities
This quiz test you on how well you are familiar with solving quadratic inequalities.
Geometry - Real Life Application Problems
Understanding of how geometry applies to in real-world contexts
Graphs and Functions
This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.
Know Your Linear Equations
Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.
Probability Quiz
Some questions on probability