# Linear Algebra : Vectors - Inner Products

Not what you're looking for?

Given a vector w, the inner product of R^n is defined by:

<x,y>=Summation from i=1 to n (xi,yi,wi)

[a] Using this equation with weight vector w=(1/4,1/2,1/4)^t to define an inner product for R^3 and let x=(1,1,1)^T and y=(-5,1,3)^T

Show that x and y are orthogonal with respect to this inner product. Compute the values of ||x|| and ||y|| with respect to this inner product.

[b]In C[0,1], with inner product defined above, consider the vectors 1 and x. Find the angle theta between 1 and x. Determine the vector projection p of 1 onto x and verify that 1-p is orthogonal to p.

Thank you.

##### Purchase this Solution

##### Solution Summary

Inner products are calculated and vector relations proven.

The solution is detailed and well presented.

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

##### Probability Quiz

Some questions on probability