Purchase Solution

# Four stationary points of a multivariable function

Not what you're looking for?

A surface is described by the multivariable function f(x,y) where:

f(x,y) = x^3 + y^3 + 9(x^2 + y^2) + 12xy

a) Show that the four stationary points of this function are located at:

(x1, y1) = (0, 0)
(x2, y2) = (-10, -10)
(x3, y3) = (-4, 2)
(x4, y4) = (2, -4)

##### Solution Summary

This shows how to find the four stationary points of a function.

##### Solution Preview

Stationary points are the points such that the partial derivatives of f(x,y) both with respect to x and y are 0.

Take the partial derivative of f(x,y) both respect to x and y to get

3x^2+18x+12y=0 (1)
3y^2+18y+12x=0 ...

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Probability Quiz

Some questions on probability