# Solve: Multivariate Calculus

Not what you're looking for?

Please see the attached file for full problem description.

(a) where R is the region in the first quadrant which lies inside the circle x^2 + y^2 = 2x and outside the circle x^2 + y^2 = 1.

(b) If f(x,y) = x/y and h(x,y) = (1/2)x^2 - 4y find the rate of change of f(x,y) at the point (2, -1) in the direction in which h(x,y) is increasing most rapidly.

##### Purchase this Solution

##### Solution Summary

This solution provides a very detailed, step by step response demonstrating how to approach a problem with a double integral, and another problem dealing with the rate of change. An explanation accompanies each step. A pdf. file is attached which contains the complete solution.

##### Solution Preview

(a) Whenever you see a double integral involving (x^2 + y^2) try transforming using polar coordinates to see if it simplifies. Remember the relations for polar transformations:

x = r cos theta y=rsin theta

x^2+y^2 = r^2

and the Jacobian gives

dxdy = r dr dtheta

Now the region of interest R is the segment in the 1st quadrant bounded by the circles with radii 1 and sqrt(2*pi). In polar coordinates since we are restricted to the first quadrant we have 0 < theta < pi/2. For the r variable we must restrict ...

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts