Explore BrainMass

Explore BrainMass

    Find a solution in the form of a power series for an ODE

    Not what you're looking for? Search our solutions OR ask your own Custom question.

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    Please see the attached file for the fully formatted problems.

    Find a solution in the form of a power series for the equation

    y" - 2*x*y' = 0

    (ie find 2 linearly independent solutions y1(x) and y2(x)).

    After doing that, note that the equation can also be solved directly by integration:

    y"/y' = 2x
    ln(y') = x^2 + c1
    y' = ke^(x^2) k=e^c1

    y = k* integral((e^(t^2))dt + C) from 0 to x

    Thus, one of your power series solutions gives and explicit form for the integral:

    integral(e^(t^2)dt) from 0 to x

    © BrainMass Inc. brainmass.com May 24, 2023, 12:59 pm ad1c9bdddf
    https://brainmass.com/math/basic-algebra/solution-form-power-series-ode-8097

    Attachments

    Solution Preview

    Please see the attached file for the complete solution.
    Thanks for using BrainMass.
    Solution. Assume that a solution of the ODE (in form of power series) is as follows.

    y(x)=a(0)+a(1)x+a(2) +a(3) +...+a(n) +... (1)

    where a(i), i=0,1,2,... are coefficients.

    Then by (1) we have,

    y'(x)=a(1)+2*a(2)x+3*a(3) +...+n*a(n) +(n+1)*a(n+1) +... (2)

    and

    y''(x)=2*a(2)+6*a(3)x+...+n(n-1)*a(n) +(n+1)n* a(n+1) +(n+2)(n+1)*a(n+2) +... ...

    Solution Summary

    A solution is found in the form of a power series for an ODE. Independent solutions are solved by using integration.

    $2.49

    ADVERTISEMENT