Explore BrainMass

Explore BrainMass

    Parameters of a white Gaussian noise process

    Not what you're looking for? Search our solutions OR ask your own Custom question.

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    A white Gaussian noise process X(t) with power spectral density (PSD) N0/2=0.1 is input to an LTI filter with a transfer function H(f) given by

    H(f) = 2, |f| <= W and 0, otherwise

    The output is denoted Y(t).

    (1) Find the autocorrelation function RX(t) of X(t).
    (2) Find E[Y(t)].
    (3) Find the PSD of Y(t).
    (4) Determine a W such that E[Y2(t)] = 10.
    (5) Find the first-order PDF of Y(t), i.e., fY(t)(y), when E[Y2(t)] = 10.
    (6) Find the probability P(Y(t)>3), when E[Y2(t)] = 10.

    © BrainMass Inc. brainmass.com May 24, 2023, 1:05 pm ad1c9bdddf


    Solution Preview

    Sx(f) = integral(-infinity to +infinity) [Rx(t)*exp(-i.2.pi.f.t)*dt]
    =>Rx(t) = (1/(2.pi))*integral(-inf to +inf)[Sx(f)*exp(i.2.pi.f.t)*df]
    Sx(f) = 0.1
    =>Rx(t) = (0.1/(2.pi))*integral(-inf to +inf)[exp(i.2.pi.f.t)*df]
    => Rx(t) =(0.1/(2.pi))*2*integral(0 to +inf)[cos(2.pi.f.t)*df]
    => Rx(t) =(0.1/(2.pi))*2*pi*delta(t) = 0.1*delta(t)
    where, delta(t) is the sampling function. --Answer

    2.) because,
    Y(f) = ...

    Solution Summary

    The parameters of a white Gaussian noise process are found. The autocorrelation functions are given. The solution is 260 words, equations and explanations.