Purchase Solution

Modeling of a high-voltage transmission

Not what you're looking for?

Ask Custom Question

Note: The Solution is handwritten.

FIGURE 3(a) represents a 50 Hz, three-phase, high-voltage, transmission line. For one phase, the relationships between the sending end voltage and current and the receiving end voltage are given by the complex ABCD equations:
where VS is the sending-end voltage, IS the sending-end current and VR is the magnitude of the open-circuit receiving end voltage.

(a) Given the parameter values in TABLE A and if the magnitude of the receiving-end line voltage VRL is measured as 154 kV when feeding a balanced load of 40 MVA at a power factor of 0.9, calculate the value of the sending-end phase voltage VSP and sending-end phase
current ISP.
[N.B. VSL = â??3 Ã- VSP and the total power in a three-phase load is given by P = â??3VI cos ?.]
(b) Hence or otherwise calculate the sending-end power and thus the power lost in the cable.
(c) If the line is modelled by the ?-circuit of FIGURE 3(b), see if you can estimate the primary line coefficients R, L, G and C. The line is 50 km long.

Please answer in full and show all working.

Attachments
Purchase this Solution

Solution Summary

This problem provides the solution of how to model a high voltage transmission line by a two port network.

Purchase this Solution


Free BrainMass Quizzes
Architectural History

This quiz is intended to test the basics of History of Architecture- foundation for all architectural courses.