Explore BrainMass

Calculating maximum velocity, displacement and stretch

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

The pair of blocks, which are connected by a cord, are released from rest when the spring is unstretched. The static and kinetic coefficients of friction are .2 and .1, respectively.

The following things are to be found using the work-energy methods:

1) Maximum Velocity of the blocks
2) Stretch of the spring at the maximum velocity of the blocks
3) Maximum displacement of the blocks during motion
4) Will the blocks rebound from the position of part 3?

Please see the attached file for the diagram.

© BrainMass Inc. brainmass.com October 24, 2018, 6:13 pm ad1c9bdddf


Solution Preview

mass of the block kept on the horizontal table m1 = 10 lb
mass of the hanging block m2 = 5 lb
coeff. static friction mu_s = 0.2
coeff. of kinetic friction mu_k = 0.1
spring constant K = 20 lb/ft = 20*32 = 640 lb.(ft/s^2)/ft
g = 32 ft/s^2

1 & 2.) Let us assume the velocity of the blocks be v at x stretching of the spring.

Hence, by energy law,
work done against friction force + K.E. + spring energy = decrease in P.E. of the hanging block

=> mu_k*m1*g*x + ...

Solution Summary

This solution is provided in 353 words. It uses step-by-step calculations to solve each problem using energy and Newton's law.

See Also This Related BrainMass Solution

Spring supporting two blocks without friction

A 0.7 lb block rests on top of a 0.5 lb block supported by but not attached to a spring of constant 9 lb/ft. The upper block is sudenly removed.
A) Determine the maximum velocity reached by the 0.5 lb mass
B) the maximum height reached by the 0.5 lb mass

Please see attachment

View Full Posting Details