Explore BrainMass

plot continuous and discrete-time signals in Matlab

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

See attached file for full description:

Activity 1:
Consider the discrete-time signal: x[n] = sin(2*pi*Mn/N), and assume N = 12. For M = 4, 5, and 10, plot x[n] on the interval 0 =< 0 < = 2n - 1. Use stem in Matlab to create your plots, and be sure to approximately label your axes.
Questions: What is the fundamental period of each signal?

Activity 2:
Consider the following two signals:
x1[n] = cos(2*pi*n/N) + 2cos(3*pi*n/N)
x2[n] = cos(pi * n^2/2),
And assume N = 6 for signal x1[n]. Plot each signal separately for the interval of 0 =< n < = 24. Use stem and label your axes.
Questions: are the signals periodic? Explain.

Activity 3:
Consider the following continuous signal:
x(t) = 10exp(-3t)u(t)
Plot the continuous-time signal over the range -1=<t <= 5.

© BrainMass Inc. brainmass.com October 24, 2018, 11:25 pm ad1c9bdddf


Solution Preview

Please see the attached word file for the results.

The codes for the three activities are also attached in the zip file. Unzip the file. ...

Solution Summary

The solution shows how to plot continuous and discrete-time signals in Matlab. Matlab codes are plots are included.

See Also This Related BrainMass Solution

Matlab - A discrete-time system has the following unit-pulse response

There are two files which both need completed. Please see attached files for full problem description.
Please be sure to provide code and plots. Thanks.

Lab 2:
1. A discrete-time system has the following unit-pulse response:
h[n] = 0.5^n - 0.25^n, for n >= 0
Correspondingly, the following difference equation describes the behavior of the system:
y[n+2] - 0.75y[n+1] + 0.125y[n] = 0.25x[n+1]

A. Use the MATLAB command conv to calculate the response of the system to
a unit step input, x[n]=u[n]. Consider 0 =< n <= 20. Show what you type into
the MATLAB command window and submit a plot of the output. Please label the axes.

B Use the MATLAB script recur to calculate the response of the system to a
unit step input, x[n]=u[n]. Again consider 0 =< n <= 20. Show all that you type
into the MATLAB command window. Submit a plot of the output with the axes labeled.

Lab 3:
The continuous time function. This signal is a sinc function defined as y(t) = sinc(t). The Fourier transform of this signal is a
rectangle function.
1. Use the function linspace to create a vector of time values from -5 =<t <=5. Next, plot the function using the sinc function for y(t) = sinc(t).
2. Using MATLAB and the command fft, show that the Fourier transform pair is indeed a rectangle function. Use the command fftshift to center your plot.. Show both the m-file code and plot.
3. Using the same time values, plot the continuous time function defined as y(t) = sinc(2t).
4. Plot the transform pair for this signal.

1. What is the "ringing" caused from seen on top of the rectangular pulse?
2. In step 3 above, the sinc function gets compressed or smaller by a factor of 2. What happened to the rectangular pulse in the frequency domain? What property does this relate to?

View Full Posting Details