Explore BrainMass

Explore BrainMass

    Electrical and Computer Engineering

    Not what you're looking for? Search our solutions OR ask your own Custom question.

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    a) Suppose Xt is a random process which is second-order stationary. Show that it is also stationary of order 1.

    b) Show that if X and Y are independent then they are also uncorrelated.

    c) If events A and B are disjoint then they are also independent. True or False?

    d) If X and Y are jointly Gaussian then Z = root(x^2 + y^2) is also Gaussian. True or False?

    f) If Pxy = 1 then y = ax + b for some a > 0. True or False?

    © BrainMass Inc. brainmass.com May 24, 2023, 1:13 pm ad1c9bdddf

    Solution Preview

    (a) The first order stationary random process has the following feature:
    E[Xt]=mu for all t ----> mean is time independent.

    The second order stationary random process has the following features:
    E[Xt]=mu for all t
    E[Xt^2]=mu2 for all t ----> mean and variance are time independent.
    Cov[Xt, Xs] is only a function of t-s.

    Compare these two ...

    Solution Summary

    Solution contains true/false answers and full explanations on electrical and computer engineering.