Calculating the mean and standard error in the given cases

1. Find the mean of the sampling distribution of the sample size n = 36 if the population mean is 4 and the standard deviation is 3.
Choose one answer.
A. 4
B. 2
C. 1

2. Find the standard error of the sampling distribution of the sample size n = 36 if the population's mean is 4 and the standard deviation is 3.
Choose one answer.
A. 3
B. 1
C. 0.5

Question 3
Marks: 1 ACE Temp Service Company has found that the mean time required for a job applicant to take an aptitude test is 24.5 minutes with a standard deviation of 4.5 minutes. What is the mean of the sampling distribution of sample size 81?
Choose one answer.
A. 24.5
B. 12.25
C. 22

Question 4
ACE Temp Service Company has found that the mean time required for a job applicant to take an aptitude test is 24.5 minutes with a standard deviation of 4.5 minutes. What is the standard error of the sampling distribution of sample size 81?
Choose one answer.
A. 4.5
B. 9
C. 0.5

Question 5
A random sample of 81 files was randomly selected. What is the probability that the mean time applicants need for taking the test is greater than 25 minutes?
Choose one answer.
A. 0.3413
B. 0.1587
C. 0.4722

Question 6
Of the 2500 middle managers in a large company, 60% of them hold M.B.A. degrees. You select a random sample of 81 of them. What is the probability that the proportion in the sample with M.B.A. degrees is between 59.5% and 60.5%?
Choose one answer.
A. 0.0718
B. 0.0398
C. 0.1538

Solution Preview

1. Mean of the sampling distribution is the same as the population mean. So, the correct answer is A i.e. 4

2. Population standard deviation=3
Sample size=36
Standard error of sampling distribution=Population standard deviation/square root of sample size
=3/36^0.5
=0.5
Correct option is C i.e. ...

Solution Summary

Solutions to given problems explain the methodology to calculate the mean and standard error of sampling distribution in the given cases. Solutions are derived by using standard formulas.

Given a one independent variable linear equation that states cost in $K, andgiventhe following information, cauculate the standard errorand determine it's meaning.
n=8 ?(Y-?) 2 =11008 Y=314.375
A)If we use this equation, we could typically expect to be off by ± $37.09K.
B)If we use this equation, we could typical

Listed below are white blood cell counts for 10 human males. Calculate and report themean, standard deviation, standard error, and range for this sample.
5.25, 5.95, 10.00, 5.45, 5.30, 6.85, 9.30, 8.20, 6.20, 7.10

The standard error of themean:
A. is never larger than the standard deviation of the population
B. decreases as the sample size increases
C. measures the varability of themean from sample to sample
D. All of the above

The margin of error for polling results is typically determined as the half-width of a 95% confidence interval. With respect to a particular ballot proposition, a random sample of 423 voters indicated 51% support and 49% oppose the measure. What is the margin of error? Interpret the result.

When we move from the basic normal distribution to the sampling distribution of themean we substitute the standard error of themean for the standard deviation when we make the conversion to the standardized normal distribution. Why do we use the standard error of themean in this case? And how does using the standard error aff

True or False: (please show me why)
A simple random sample of 100 observations was taken from a large population andthe sample meanandthe standard deviation were determined to be 80 and 12 respectively. The standard error of themean is 0.12.

A sample of 200 items will be taken andthe population standard deviation is σ; = 10. Use α = .05. Compute the probability of making a Type II error, if, unbeknownst to the tester, the real mean is 18.
Show all work and include a sketch that represents β.

1. Use the information given to calculate the standard error of themean. Mean systolic blood pressure for a sample of n=324 men is =123.5, andthe standard deviation is s=9.
2. If each of the following is decreased but everything else remains the same, will a confidence interval become wider, will it become narrower, or wil