Explore BrainMass

Explore BrainMass

    Four Poisson Distribution Problems

    Not what you're looking for? Search our solutions OR ask your own Custom question.

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    See attached file for clarity.

    #3. Assume that the number of uninspected cars caught at a state police checkpoint is Poisson distributed with average 2.1 per hour. (a) What is the average number of cars caught in t hours? (b) What are P(no cars caught
    in 14 hours? (c) P(at least 3 in 1.5 hours); (d) P(at least 1 car caught within 10 minutes of setting up the checkpoint)?

    #7 a. Assume that batteries last for a time that is exponentially distributed with average 2 Months. If a transmitter needs one battery at a time and 4 (including the original) are taken on a expedition, what are (a)
    P(Transmitter last at least 11 Months)?

    #9. Louise sells encyclopedias door to door. She stops for the day after 4 sales. Assume that the time between sales is exponentially distributed. (a) If she can expect to work for 7 hours to make the 4 sales, what is the
    parameter / ? What is the probability that she will stop (b) before 6 hours; (c) after 9 hours?

    #10. Suppose that customers enter a store according to a Poisson stream with average 40.7 for a whole day. Suppose that 2 out of5 customers result in a sale. What is the distribution for the number of sales in half a day.

    © BrainMass Inc. brainmass.com March 4, 2021, 10:25 pm ad1c9bdddf
    https://brainmass.com/statistics/probability/poisson-distribution-problems-330151

    Attachments

    Solution Preview

    See the attached file for full solution.

    #3. Given the number of cars caught is a Poisson process at an average rate 2.1 per hour. Then if X denotes the number of cars caught in an interval of duration t hours, X follows Poisson distribution with parameter (i.e., mean )
    a) Average number of cars caught in t hours is =
    b) Number of cars caught in ¼ hours follows Poisson distribution with mean
    2.1 * 0.25(= 0.525).
    Probability that no cars caught in ¼ hours = = 0.5916
    Note: can be obtained by using the MS excel function POISSON (0, 0.525, 0)
    c) Number of cars caught in 1.5 hours follows Poisson distribution with mean
    2.1*1.5 = 3.15.
    Probability that at least 3 cars caught within 1.5 hours
    = = 1-0.3904 = 0.6096
    Note: can be obtained by using the MS excel ...

    Solution Summary

    The solution discusses four Poisson distribution problems.

    $2.49

    ADVERTISEMENT