Purchase Solution

S Inertial Frames

Not what you're looking for?

Ask Custom Question

The following posting helps with problems involving inertial frames. See attached file for full problem description.

Purchase this Solution

Solution Summary

The following posting answers questions about inertial frames.

Solution Preview

The explanations are written in the attached pdf file.

The two web pages I use as references for formula are
http://en.wikipedia.org/wiki/Lorentz_transformation
and
http://www.wbabin.net/hamdan/hamdan4.htm
However you may not necessarily need them as you likely have all the formula in your textbook(s) or lecture notes.

=======
Here is the plain TEX source

We shall use the notations
$$
beta = {vover c}
eqno(0.1)
$$
for the dimensionless speed, and
$$
gamma = {1oversqrt{1-beta^2}}
eqno(0.1)
$$
for the Lorentz factor.

bf Q.1rm

Lorentz transformation for the time is
$$
t' = gammal( t - {vxover c^2} r).
eqno(1.1)
$$
As we are requested to have $t'_A = t'_B$ for the two events, from equation (1.1) this requirement

means
$$
gammal( t_A - {vx_Aover c^2} r) = gammal( t_B - {vx_Bover c^2} r).
eqno(1.2)
$$
From equation (1.2) we find the requested difference in times of the events in frame S:
$$
t_A-t_B = {vover c^2} l(x_A-x_Br).
eqno(1.3)
$$

bf Q.2rm

Suppose a particle at $x_1'=0$ is created at $t_1'=0$,
stays at $x_2'=0$ and decays at $t_2' = tau = 1~mu s$ (microsecond).
From the Lorentz transformation back from frame S' to frame S (the same formula as usually ...

Purchase this Solution


Free BrainMass Quizzes
Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.

The Moon

Test your knowledge of moon phases and movement.

Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.