Purchase Solution

Kinematics: Motion in One Dimension

Not what you're looking for?

Ask Custom Question

Problem #1.
A car traveling at constant speed of 30m/s passes a trooper hidden behind a bush. Once second after the speeding car passes the bush, the trooper sets off in chase with a constant acceleration of 3.0 m/s2. How long does it take the trooper to overtake the speeding car? How far does the trooper travel during this time?

Problem #3.
A stone is thrown vertically downward with a speed of 6m/s from a cliff. How far down will the stone be from the cliff after 3.0 s? What will its velocity after 3.0s?

Problem #4.
A parachutist with a camera, both descending at a speed of 10m/s, releases that camera at an altitude of 50m. How long does the camera take to reach the ground? What is the velocity of the camera just before it hits the ground?

Problem #5.
A rocket moves upward, starting from rest with an acceleration of +29.4 m/s2 for 4.0s. It runs out of fuel at the end of this 4.0s and continues to move upward. How high does it rise above its original starting point? What is the time of flight of the rocket?

Purchase this Solution

Solution Summary

The problems are solved in a way to make the student learn the problem solving.

Solution Preview

Please see the attached file.

Problem #1.
A car traveling at constant speed of 30m/s passes a trooper hidden behind a bush. Once second after the speeding car passes the bush, the trooper sets off in chase with a constant acceleration of 3.0 m/s2. How long does it take the trooper to overtake the speeding car? How far does the trooper travel during this time?

Let the trooper takes time t seconds in overtaking at a distance of s m. The initial velocity of the trooper is zero. Then using the second equation of motion we have

s = u*t + ½*a*t2]

s = 0*t + ½ *3*t2
Or s = (3/2) t2 -------------- (1)

Now the time for which the car was in motion before the overtaking is (t + 1) second and in this time it has covered the same distance s at constant velocity and hence

s = v*t = 30*t -------------- (2)

Substituting s from equation (2) in (1) we get

30*t = (3/2) t2

or t2 - 20t = 0

or t(t - 20) = 0

gives t = 0 and t = 20 second, t=0 is corresponding to the initial condition when both are near the bush hence the correct answer is 20 second.

Hence the time taken in overtaking is 20 s.

Substituting in equation (2) we get ...

Purchase this Solution


Free BrainMass Quizzes
Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

Classical Mechanics

This quiz is designed to test and improve your knowledge on Classical Mechanics.

Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

Basic Physics

This quiz will test your knowledge about basic Physics.

Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.