Explore BrainMass

Electron's motion in Electro Magnetic field

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

An electron moves in a force field due to a uniform electric field E and a uniform magnetic field B that is at right angles to E. Let E = jE and B = kB. Take the initial position of the electron at the origin with initial velocity vo = ivo in the x direction. Find the resulting motion of the particle. Show that the path of motion is a cycloid.

x = a sin wt + bt
y = a (1 - cos wt)
z = 0

© BrainMass Inc. brainmass.com October 24, 2018, 11:53 pm ad1c9bdddf


Solution Preview

Following is the text part of the solution. Please see the attached file for complete solution. Equations, diagrams, graphs and special characters will not appear correctly here. Thank you for using Brainmass.

Start out with writing the Lorenz force on the electron.

F = -e [E + v x B]

Let v = (vx, vy , vz) and F = (Fx, Fy, Fz)

F = -e [E j + (vx,vy,vz) x B k]

(Fx, Fy, Fz) = -e [E j + - vx j + vy i]
Equating the components,

Fx = - e vy B
Fy = -e(E - B vx)
Fz = 0

Apply Newton's second law. F = m a

Fx = m d^2x/dt^2 = - e vy B
Fy = m d^2y/dt^2 = ...

Solution Summary

I have found the path of the electron when it is placed in a mutually perpendicular magnetic and electric fields provided that the electron is in motion. This problem and solution set will be a great practice set for a student in an Electromagnetic Theory course.

See Also This Related BrainMass Solution

Magnitude of velocity of a electron

An electron e= 1.6*10^-19C, m= 9.1*10^-31kg is accelerated through a potential difference of 2kV. It then passes into a magnetic field perpendicular to its path, where it moves in a circular arc of diameter 0.36m.

1.) What is the magnitude of the velocity of the electron in a magnetic field?

2.) What is the magnitude of the magnetic field?

3.) What is the frequency of the electron's motion in the magnetic field?

View Full Posting Details