# The Hydrogen Atom and the Radial Angular Momentum

Not what you're looking for?

Hydrogen atom

The radial probability density for an electron is r2R2(r). That means that the probability of finding an electron at a certain radius r within a radial thickness dr is dr* r2R2(r) for an infinitely thin shell and approximately r* r2avg R2(ravg) for a shell of finite thickness r.

The quantity ravg is some average radius within the shell...

(a) Estimate the probability that an electron in the n=1,l=0 state will be found in the region from r=0m to r= 10-15m.

(b) Repeat the calculation for n=2, l=1.

(c) Compare the two results, explain their difference, and explain the relevance of 10-15m distance from the center of the atom.

(d) Consider the state n=2, l=0 in hydrogen. What are the values of r for which the probability density is zero?

Sketch the probability density as a function of r for this state.

##### Purchase this Solution

##### Solution Summary

The solution examines a hydrogen atom and the radial angular momentum. The probability that an electron in the n=1 and I=0 state will be found in the region from r=0m to r=10-15m is determined.

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Intro to the Physics Waves

Some short-answer questions involving the basic vocabulary of string, sound, and water waves.

##### The Moon

Test your knowledge of moon phases and movement.

##### Variables in Science Experiments

How well do you understand variables? Test your knowledge of independent (manipulated), dependent (responding), and controlled variables with this 10 question quiz.

##### Introduction to Nanotechnology/Nanomaterials

This quiz is for any area of science. Test yourself to see what knowledge of nanotechnology you have. This content will also make you familiar with basic concepts of nanotechnology.

##### Basic Physics

This quiz will test your knowledge about basic Physics.