Explore BrainMass
Share

Ant on a Tightrope

Homework help from our online tutors - BrainMass.com

A large ant is standing on the middle of a circus tightrope that is stretched with tension T_s. The rope has mass per unit length mu. Wanting to shake the ant off the rope, a tightrope walker moves her foot up and down near the end of the tightrope, generating a sinusoidal transverse wave of wavelength lambda and amplitude A. Assume that the magnitude of the acceleration due to gravity is g.

a) What is the minimum wave amplitude A_min such that the ant will become momentarily weightless at some point as the wave passes underneath it? Assume that the mass of the ant is too small to have any effect on the wave propagation.
Express the minimum wave amplitude in terms of T_s, mu, lambda, and g.

© BrainMass Inc. brainmass.com September 18, 2018, 2:06 pm ad1c9bdddf

Solution Preview

The ant should go down with acceleration g for it to feel weightless.
Let the sine wave created by the man by tapping his foot be y = A sin ωt
Differentiating this ...

Solution Summary

The solution expresses step-by-step the minimum wave amplitude in terms of T_s, mu, lambda, and g.

$2.19